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A quartic spline based remapping algorithm is developed and illustrative tests of it are pre-
sented herein. To ensure mass conservation, the scheme solves an integral form of the
transport equation rather than the differential form. The integrals are computed from
reconstructed quartic splines with mass conservation constraints. For higher dimensions,
this remapping can be used within a standard directional splitting methodology or within
the flow-dependent cascade splitting approach. A high-order grid and sub-grid based
monotonic filter is also incorporated into the overall scheme. This filter is independent
of the underlying spline representation adopted here, and is of more general application.
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1. Introduction

Remapping algorithms, such as the widely used Piecewise Parabolic Method (PPM) [1], are an important component in
many advection schemes for conservative transport. These remappings are also the building blocks of many of the inherently
conserving semi-Lagrangian schemes [2–11].

An alternative to PPM, based on the Parabolic Spline Method (PSM), was presented in [12] and demonstrated in [13] for
two-dimensional conservative transport in Cartesian and spherical geometries. PSM is similar to PPM, but more accurate
(due to its ‘‘best approximation” property), whilst being 60% more efficient [12]. PSM also incorporates a more selective,
and less damping, monotonic filter than that used in the original PPM [1]. PSM achieves monotonicity without (except in
extreme cases) reducing the order of the piecewise polynomial, and it well captures steep gradients and curvature without
recourse to artificial steepening.

The goal of the present paper is to generalise the PSM remapping algorithm to higher order, for increased accuracy. Being
based on a quartic spline, the resulting algorithm is termed the Quartic Spline Method (QSM). Similarly to PSM, QSM also has
2009 Published by Elsevier Inc. All rights reserved.
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a ‘‘best approximation” property: whereas PSM is optimal within the class of second-order polynomial representations of
density, QSM is optimal within the class of fourth-order ones.

The rest of the paper is organised as follows: Section 2 details the QSM remapping algorithm and its properties; its mono-
tonic filter is described in Section 3; results using the proposed scheme are presented in Section 4 and compared with those
using PSM; and conclusions are summarised in Section 5.
2. The Quartic Spline Method (QSM)

2.1. Problem definition

Consider passive 1D conservative transport of a scalar quantity q governed, in the absence of sources and sinks, by
@q
@t
þ @

@x
ðuqÞ ¼ 0; ð1Þ
where qðx; tÞ is the density (amount of scalar per unit length) of the transported quantity, and uðx; tÞ is the transporting
velocity field. Assume a finite fluid volume bounded by two arbitrary boundaries x1 ¼ x1ðx; tÞ and x2 ¼ x2ðx; tÞ moving with
the fluid, so that
dx1

dt
¼ uðx1; tÞ;

dx2

dt
¼ uðx2; tÞ: ð2Þ
Integrating (1) with respect to x between two arbitrary moving boundaries xL ¼ xLðx; tÞ and xR ¼ xRðx; tÞ, and making use of
Leibniz’ rule, then leads [5] to the classical integral form of the tracer conservation equation
dMðxL; xR; tÞ
dt

� d
dt

Z xRðtÞ

xLðtÞ
qðx; tÞdx

 !
¼ 0: ð3Þ
Eq. (3) simply states that the mass MðxL; xR; tÞ contained between any two boundaries, xLðtÞ and xRðtÞ, that move with the
fluid, is invariant in time, i.e. M is conserved.

Since xLðtÞ and xRðtÞ in (3) are any two points travelling with the fluid, one can consider that these moving boundaries
instantaneously coincide at time tnþ1 with the boundaries of an Eulerian Control Volume (ECV). Their upstream positions
xLðtnÞ and xRðtnÞ at time tn then form the left and right boundaries of the associated upstream Lagrangian Control Volume
(LCV). In other words, since the fluid is a continuum, then the fluid contained in the Lagrangian segment
xd

L ; x
d
R

� �
� ½xLðtnÞ; xRðtnÞ� is completely transported to the Eulerian segment ½xLðtnþ1Þ; xRðtnþ1Þ� (this provides the basis of the

SLICE scheme [2]).
To discretise (3), consider the general case where the computational 1D domain X ¼ ½xmin; xmax� is subdivided into N ECV’s

with (possibly unequal) spacing hi � xiþ1=2 � xi�1=2 ði ¼ 1;2; . . . ;NÞ, where xi�1=2 and xiþ1=2 are respectively the left and right
boundaries of ECVi. For a closed domain, the left boundary is at x ¼ x1=2 and the right boundary at x ¼ xNþ1=2. For a periodic
domain, xNþiþ1=2 � xi�1=2 ði ¼ 0;�1;�2; . . .Þ.

Defining the gridbox-averaged density at time t as
�qiðtÞ �
1
hi

Z xiþ1=2

xi�1=2

qðx; tÞdx � 1
hi

Mðxi�1=2; xiþ1=2; tÞ �
1
hi

Mi; ð4Þ
the time-discretisation of (3) can then be rewritten as
�qnþ1
i � �qiðtnþ1Þ � 1

hi
ðMiÞnþ1 ¼ 1

hi
Md

i

� �n
; ð5Þ
where
Md
i �

Z xd
iþ1=2

xd
i�1=2

qðx; tÞdx: ð6Þ
Here superscript n denotes evaluation at time tn, superscript d denotes association with a departure-point value (as in semi-
Lagrangian schemes [14]), and xd

i�1=2 and xd
iþ1=2 are respectively the left- and right-hand boundaries of LCVi at time tn, deter-

mined from numerical integration of (2) – see e.g. [14].
In general, the shape of qðx; tnÞ is not known a priori, and hence (6) cannot be evaluated. Instead piecewise polynomials

that use the given discrete gridbox-averaged values can be reconstructed. Previous approaches have used either piecewise
constant, piecewise linear [15], piecewise parabolic [1,12] or piecewise cubic [2,8] polynomials. Herein a Quartic Spline
Method is proposed.
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2.2. Formulation

A quartic spline is the union of piecewise-defined quartic polynomials, constructed so the resulting composite function,
together with its first, second, and third derivatives, are all continuous everywhere within the domain. In the present con-
text, the quartic spline may be written as
qðxÞ ¼
XN

i¼1

qiðxÞ; ð7Þ
h i
where qiðxÞ is a quartic polynomial defined on the interval xi�1
2
; xiþ1

2
. The quartic polynomial qiðxÞmay be uniquely written

in terms of the five meshpoint values qi�1
2
� q xi�1

2

� �
; qiþ1

2
� q xiþ1

2

� �
; Mi�1

2
� :ðd3q=dx3Þjx

i�1
2

; Miþ1
2
� ðd3q=dx3Þjx

iþ1
2

and

�qi �
R x

iþ1
2

x
i�1

2

qiðxÞdx=hi. [Note: of these five values, only �qi is given, and the remaining four remain to be determined via impo-

sition of continuity constraints.] Thus
qiðnÞ ¼ að0Þi þ að1Þi nþ að2Þi n2 þ að3Þi n3 þ að4Þi n4; n 2 ½0;1�; ð8Þ
where
n �
x� xi�1

2

hi

� �
ð9Þ
is a dimensionless local coordinate, and að0Þi ; að1Þi ; að2Þi ; að3Þi ; að4Þi

� �
are coefficients defined such that
að0Þi ¼ qi�1
2
; ð10Þ

að1Þi ¼ �2qiþ1
2
� 4qi�1

2
þ h3

i

20
Mi�1

2
þ h3

i

30
Miþ1

2
þ 6�qi; ð11Þ

að2Þi ¼ 3qiþ1
2
þ 3qi�1

2
� 7h3

i

40
Mi�1

2
� 3h3

i

40
Miþ1

2
� 6�qi; ð12Þ

að3Þi ¼
h3

i

6
Mi�1

2
; ð13Þ

að4Þi ¼
h3

i

24
Miþ1

2
� h3

i

24
Mi�1

2
; ð14Þ

�qi ¼
Z 1

0
qiðnÞdn: ð15Þ
Successively differentiating (8) then gives
dqiðnÞ
dn

¼ að1Þi þ 2að2Þi nþ 3að3Þi n2 þ 4að4Þi n3; ð16Þ

d2qiðnÞ
dn2 ¼ 2að2Þi þ 6að3Þi nþ 12að4Þi n2; ð17Þ

d3qiðnÞ
dn3 ¼ 6að3Þi þ 24að4Þi n; ð18Þ

d4qiðnÞ
dn4 ¼ 24að4Þi : ð19Þ
By construction, qðxÞ, as defined by (7)–(19), is continuous and has continuous third derivatives at all meshpoints
xi�1

2
; i ¼ 1;2; . . . ;N. Imposing the conditions that its first and second derivatives also be continuous at these same meshpoints

then fully defines the quartic spline (apart from boundary considerations – see Section 2.3) and yields two equations that
relate the five quantities qi�1

2
; qiþ1

2
; Mi�1

2
; Miþ1

2
and �qi. This is achieved for first derivatives by equating ðdqi=dxÞjx

iþ1
2

and

ðdqiþ1=dxÞjx
iþ1

2

, both evaluated using (16). Thus
h2
i

30
Mi�1

2
� 1

20
h2

iþ1 � h2
i

� �
Miþ1

2
�

h2
iþ1

30
Miþ3

2
þ 2

hi
qi�1

2
þ 4

hi
þ 4

hiþ1

� �
qiþ1

2
þ 2

hiþ1
qiþ3

2
¼ 6

hiþ1
qiþ1 þ

6
hi

�qi: ð20Þ
Similarly, for second derivatives, i.e. equating ðd2qi=dx2Þjx
iþ1

2

and ðd2qiþ1=dx2Þjx
iþ1

2

, one obtains !" #  !

1

20
3hiMi�1

2
þ 7ðhi þ hiþ1ÞMiþ1

2
þ 3hiþ1Miþ3

2

h i
� 6

1

h2
iþ1

qiþ3
2
þ 1

h2
iþ1

� 1

h2
i

qiþ1
2
� 1

h2
i

qi�1
2
¼ �12

1

h2
iþ1

�qiþ1 �
1

h2
i

�qi :

ð21Þ
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The quantities on the right-hand sides of (20) and (21) are all known, whereas those on the left-hand sides are not. Eqs.
(20) and (21) couple the unknown M’s to the unknown q’s. To obtain an efficient solution algorithm, the following steps are
followed to decouple the equations:

1. Supplement (20) and (21) by their index increments (i.e. i! iþ 1 everywhere in (20) and (21)) and index decrements (i.e.
i! i� 1 everywhere in (20) and (21)). This gives a set of six linear equations that relate the ten unknown quantities
Mi�3

2
; Mi�1

2
; Miþ1

2
; Miþ3

2
; Miþ5

2
; qi�3

2
; qi�1

2
; qiþ1

2
; qiþ3

2
and qiþ5

2
, to the four known quantities �qi�1; �qi; �qiþ1 and �qiþ2.

2. Eliminate qi�3
2
; qi�1

2
; qiþ3

2
and qiþ5

2
from this set of six equations to reduce it to two equations for the six unknown quan-

tities Mi�3
2
; Mi�1

2
; Miþ1

2
; Miþ3

2
; Miþ5

2
and qiþ1

2
.

3. Eliminate qiþ1
2

from these two equations to obtain an equation for the five unknown quantities Mi�3
2
; Mi�1

2
; Miþ1

2
; Miþ3

2
and

Miþ5
2
. This leads to a pentadiagonal set of linear equations. With appropriate boundary conditions (see Section 2.3) this

pentadiagonal set can be solved for Mi�3
2
; Mi�1

2
; Miþ1

2
; Miþ3

2
and Miþ5

2
.

4. The remaining quantity, qiþ1
2
, is then obtained from the now-known quantities Mi�3

2
; Mi�1

2
; Miþ1

2
; Miþ3

2
and Miþ5

2
using the

remaining equation of the two equations of step 2.

For simplicity, consider first uniform resolution in a periodic domain. Eqs. (20) and (21) then reduce to
� h2

30
Miþ3

2
�Mi�1

2

� �
þ 2

h
qi�1

2
þ 4qiþ1

2
þ qiþ3

2

� �
¼ 6

h
qiþ1 þ qið Þ; ð22Þ

h
20

3Mi�1
2
þ 14Miþ1

2
þ 3Miþ3

2

� �
� 6

h2 qiþ3
2
� qi�1

2

� �
¼ �12

h2
�qiþ1 � �qið Þ: ð23Þ
Using (22) and (23), and following the steps outlined above, leads to the pentadiagonal system of equations
1
120

Mi�3
2
þ 26Mi�1

2
þ 66Miþ1

2
þ 26Miþ3

2
þMiþ5

2

� �
¼ 1

h3 ð�qiþ2 � 3�qiþ1 þ 3�qi � �qi�1Þ; ð24Þ
and to the diagnostic equation
qiþ1
2
¼ 1

12
ð��qi�1 þ 7�qi þ 7�qiþ1 � �qiþ2Þ �

h3

1440
Mi�3

2
þ 22Mi�1

2
� 22Miþ3

2
�Miþ5

2

� �
; ð25Þ
for qiþ1
2
.

The counterparts of (24) and (25) for non-uniform resolution are more complicated, and are given in Appendix A.

2.3. Boundary conditions

For a periodic domain, there are exactly the right number of discrete equations to determine Miþ1=2 and qiþ1=2 from (24)
and (25) at all points xiþ1=2 in the domain. However, for a closed domain, with boundaries located at x ¼ x1=2 and x ¼ xNþ1=2,
an extra two equations (i.e. boundary conditions) are needed at each boundary to close the discrete equation set [16]: (24)
and (25) cannot be applied at the two boundaries, nor at the first interior points, since points outside the domain are
referenced.

To address this issue, whilst simultaneously ensuring smoothness of the resulting spline, assume instead the ‘‘natural”
boundary conditions d2q=dx2 ¼ d3q=dx3 ¼ 0 at the left and right boundaries (see [16] and the discussion in Section 2.6), i.e.
d2q
dx2

 !�����
x1

2

¼ d3q
dx3

 !�����
x1

2

¼ d2q
dx2

 !�����
x

Nþ1
2

¼ d3q
dx3

 !�����
x

Nþ1
2

¼ 0: ð26Þ
Applying (26), and following the procedure of Section 2.2 that led to (21), then gives
M1
2
¼ 0; q1

2
þ q3

2
� h3

1

40
M3

2
¼ 2�q1; MNþ1

2
¼ 0; qN�1

2
þ qNþ1

2
þ h3

N

40
MN�1

2
¼ 2�qN: ð27Þ
To obtain an efficient solution algorithm, the following steps are followed to decouple the equations at the left boundary
(with a similar procedure for the right boundary):

1. Supplement the first two equations of (27) with the continuity constraints (20) and (21), both evaluated for i ¼ 1 and
i ¼ 2, to obtain a set of six equations that relate M1

2
; M3

2
; M5

2
; M7

2
; q1

2
; q3

2
; q5

2
and q7

2
to the known quantities �q1; �q2

and �q3.
2. Eliminate M1

2
; q1

2
; q3

2
; q5

2
and q7

2
from this set of six equations to obtain an equation for the unknown quantities M3

2
; M5

2

and M7
2

in terms of the known quantities �q1; �q2 and �q3.
3. Further manipulate this set of six equations to obtain q1

2
and q3

2
in terms of M3

2
; M5

2
and M7

2
.
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For uniform resolution these steps lead to
M1
2
¼ 0; ð28Þ

h3

120
93M3

2
þ 27M5

2
þM7

2

� �
¼ �q1 � 2�q2 þ �q3; ð29Þ

1
120

Mi�3
2
þ 26Mi�1

2
þ 66Miþ1

2
þ 26Miþ3

2
þMiþ5

2

� �
¼ 1

h3 ð�qiþ2 � 3�qiþ1 þ 3�qi � �qi�1Þ; i ¼ 2;3; . . . ;N � 2; ð30Þ

h3

120
MN�5

2
þ 27MN�3

2
þ 93MN�1

2

� �
¼ �ð�qN�2 � 2�qN�1 þ �qNÞ; ð31Þ

MNþ1
2
¼ 0; ð32Þ

q1
2
¼ 1

2
ð3�q1 � �q2Þ þ

h3

240
26M3

2
þM5

2

� �
; ð33Þ

q3
2
¼ 1

2
ð�q1 þ �q2Þ �

h3

240
20M3

2
þM5

2

� �
; ð34Þ

qiþ1
2
¼ 1

12
ð��qi�1 þ 7�qi þ 7�qiþ1 � �qiþ2Þ �

h3

1440
Mi�3

2
þ 22Mi�1

2
� 22Miþ3

2
�Miþ5

2

� �
; i ¼ 2;3; . . . ;N � 2; ð35Þ

qN�1
2
¼ 1

2
ð�qN�1 þ �qNÞ þ

h3

240
MN�3

2
þ 20MN�1

2

� �
; ð36Þ

qNþ1
2
¼ 1

2
ð3�qN � �qN�1Þ �

h3

240
MN�3

2
þ 26MN�1

2

� �
; ð37Þ
where (24) and (25) have been inserted into the above equations to complete the two equation sets to determine
M1

2
;M3

2
; . . . ;MNþ1

2
and q1

2
;q3

2
; . . . ;qNþ1

2
.

The counterparts of (28)–(37) for non-uniform resolution are more complicated, and are given in Appendix A.
The pentadiagonal matrix associated with (28)–(31) has non-zero determinant, and is therefore invertible. The equation

set (28)–(32) is solved for M1
2
;M3

2
; . . . ;MNþ1

2
using the band-diagonal solver given in Section 2.4 of [17]. Eqs. (33)–(37) are then

used to obtain q1
2
; q3

2
; qN�1

2
; qNþ1

2
. This, via the use of (10)–(14), results in all of the coefficients in the piecewise quartic spline

(8) representation now being known.

2.4. Computation of piecewise integrals

Having defined the piecewise-defined functions qiðxÞ for each ECVi, the mass Md
i

� �n
, given by (6), of LCVi, which extends

over the segment xd
i�1=2; x

d
iþ1=2

h i
at time tn, is computed as
Md
i

� �n
¼

hl
R 1

nd
i�1=2

qn
l ðnÞdnþ

Pm�1

j¼lþ1
hj �qn

j þ hm
R nd

iþ1=2
0 qn

mðnÞdn; m P lþ 1;

hl
R nd

iþ1=2

nd
i�1=2

qn
l ðnÞdn; m ¼ l;

8>>><
>>>:

ð38Þ
where l and m P l are the ECV indices associated with the segments in which xd
i�1=2 and xd

iþ1=2 lie, i.e. xd
i�1=2 2 ½xl�1=2; xlþ1=2� and

xd
iþ1=2 2 ½xm�1=2; xmþ1=2�. Also nd

i�1=2 are the local coordinates corresponding to xd
i�1=2, i.e. nd

i�1=2 ¼ ðxd
i�1=2 � xl�1=2Þ=hl and

nd
iþ1=2 ¼ ðxd

iþ1=2 � xm�1=2Þ=hm. The integrals on the right-hand side of (38) are evaluated analytically.

2.5. Higher dimensions

For higher dimensions, the present 1D remapping algorithm can be used within a standard directional splitting method-
ology or within the flow-dependent cascade methodology used in SLICE [2,3]. In both approaches, a 2D (or 3D) problem is
spatially split into sets of 1D remapping problems to be solved using an algorithm such as PSM or PPM.

2.6. Link with classical quintic splines and the best approximation property

To link the quartic spline developed above to classical quintic splines, first define a new variable, cumulative mass, by
R xð Þ � R1=2 þ
Z x

x1=2

qðxÞdx; ð39Þ
where R1=2 is an arbitrary non-negative constant. Differentiating (39) gives
dRðxÞ
dx
¼ qðxÞ; ð40Þ
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which, after integration from x ¼ xi�1=2 to x ¼ xiþ1=2 and use of (15), then yields
1
hi

Riþ1
2
� Ri�1

2

� �
¼ 1

hi

Z xiþ1=2

xi�1=2

qðxÞdx � �qi: ð41Þ
Eq. (24) can now be rewritten using (41) as
1
120

Mi�3
2
þ 26Mi�1

2
þ 66Miþ1

2
þ 26Miþ3

2
þMiþ5

2

� �
¼ 1

h4 Riþ5
2
� 4Riþ3

2
þ 6Riþ1

2
� 4Ri�1

2
þ Ri�3

2

� �
: ð42Þ
Comparing this result for uniform resolution with (4.2.13) of [16], and taking account of differences in notation ðR! SÞ and
indexing convention (all indices of R are incremented by 1/2), it is seen that they are formally equivalent. Similarly, the
non-uniform resolution counterpart (59) to (42) is equivalent to the first equation on p. 122 of [16]. Also, the (non-uniform
resolution) constraint Eqs. (20) and (21) for continuity at gridpoints of dq=dx and d2q=dx2, respectively, are seen to be
equivalent to Eqs. (4.1.31) and (4.1.30), respectively, of [16] for continuity of d2R=dx2 and d3R=dx3.

The quartic spline defined herein in terms of the discrete values �qi is therefore equivalent to a classical quintic spline de-
fined in terms of the discrete values Riþ1=2 of a cumulative mass function: both satisfy identical continuity constraints after
taking into consideration that one (q) is the derivative of the other (R), and that a quintic spline is uniquely defined [16]. In
other words, the values of qiþ1=2 obtained from (25) are the same as would result from fitting a classical quintic spline
through the discrete values Riþ1=2 of the cumulative mass function (39) and evaluating dR=dx at gridpoints xiþ1=2. The values
of Riþ1=2, if needed, can be recursively materialised from (41) by imposing the arbitrary reference value R1=2 ¼ 0 (the Riþ1=2’s
are only defined to within an arbitrary additive constant).

A property of classical quintic splines ([16], Section 5.4) is the‘‘minimum norm” property: of all interpolating piecewise-
quintic functions, the quintic spline minimises the norm

R
ðd3R=dx3Þ2dx. Since, from (40), dR=dx ¼ q, this means thatR

ðd2q=dx2Þ2dx is minimised over the domain, i.e. the mean-squared curvature of q is minimised.
From (40), q is the derivative of R with respect to x. Thus minimising I �

P
i

R xiþ1=2
xi�1=2
ðd3R=dx3Þ2dx, i.e. minimising the norm as

in [16], is equivalent to minimising I ¼
P

i

R xiþ1=2
xi�1=2
ðd2qi=dx2Þ2dx. It can be verified that this is indeed true for the quartic spline

defined herein. First note that
I �
X

i

Z x
iþ1

2

x
i�1

2

d2qiðxÞ
dx2

" #2

dx ¼
X

i

1

h3
i

Z 1

0

d2qiðnÞ
dn2

" #2

dn ¼
X

i

1

h3
i

Z 1

0
2að2Þi þ 6að3Þi nþ 12að4Þi n2
h i2

dn

¼
X

i

1

h3
i

Z 1

0
6qiþ1

2
þ 6qi�1

2
� 7h3

i

20
Mi�1

2
� 3h3

i

20
Miþ1

2
� 12�qi

 !
þ 6h3

i Mi�1
2
nþ h3

i
1
2

Miþ1
2
� 1

2
Mi�1

2

� �
n2

" #2

dn; ð43Þ
where (12)–(14) have been used to obtain the last line of (43). For a periodic domain, minimisation of (43) with respect to
the coefficients qiþ1=2 and Miþ1=2, respectively, leads, after integration, to (20) and (21), respectively. These are the key con-
ditions that turn the piecewise-quartic function into a quartic spline.

For a bounded domain, applying the same procedure to (43) for the coefficients q5=2;q7=2; . . . ;qN�3=2 and
M5=2;M7=2; . . . ;MN�3=2 also leads to (24). Applying this procedure to (43) for q1=2; q3=2; qN�1=2; qNþ1=2 and M1=2; M3=2;

MN�1=2; MNþ1=2 , i.e. at the boundaries and at the first interior points, leads, for uniform resolution, to (28) and (29), (31)–
(34) and (36) and (37), and also, for non-uniform resolution, to (63)–(70). These are exactly the results that are obtained
if the definition of the quartic spline is closed by imposing the boundary conditions d2q=dx2 ¼ d3q=dx3 ¼ 0 at the endpoints
x1=2 and xNþ1=2. From (40), when constructing a quintic spline in terms of the cumulative mass function R, this corresponds to
imposing d3R=dx3 ¼ d4R=dx4 ¼ 0 at the boundaries. These are the ‘‘natural” boundary conditions for a quintic spline [16], so
d2q=dx2 ¼ d3q=dx3 ¼ 0 can be viewed as being the ‘‘natural” boundary conditions for the equivalent quartic spline defined
herein.

A further property of classical quintic splines ([16], Section 5.5) is the ‘‘best approximation” property: of all interpolating
piecewise-quintic functions, the quintic spline is optimal in the sense that it gives the smoothest such function to fit given
data. In the present context, this means that the quartic spline defined herein can be viewed as having a ‘‘best approxima-
tion” property for the representation of the cumulative mass function R.

3. Monotonicity

Having determined the coefficients að0Þi ; að1Þi ; að2Þi ; að3Þi ; að4Þi

� �
for each quartic qiðnÞ, a monotonicity filter is used to option-

ally detect and correct spurious non-monotonic behaviour. The monotonicity algorithm follows the approach of [18,19] and
has two parts: (i) detection of Control Volumes (CV’s) where monotonicity is spuriously violated; and (ii) local modification
of the quartic coefficients to achieve monotonicity within these flagged CVs.

There are two possible sources for the spurious violation of monotonicity: these can be characterised as being grid-scale
and sub-grid-scale.

Firstly, the estimates fqi�1=2; i ¼ 1; . . . ;N þ 1g at the CV boundaries, as a complete set, are tested for undershoots and
overshoots with respect to the given data f�qi; i ¼ 1; . . . ;Ng. This is termed grid-scale violation and the algorithm in [18]
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is used to modify the set fqi�1=2; i ¼ 1; . . . ;N þ 1g to ensure that qi�1=2 is within the range ½�qi�1; �qi�: if, initially, it is not, then
it is minimally nudged to be so, i.e. qi�1=2 ! q�i�1=2, where q�i�1=2 ¼ �qi�1 if jqi�1=2 � �qi�1j < jqi�1=2 � �qij, and q�i�1=2 ¼ �qi if
jqi�1=2 � �qi�1j > jqi�1=2 � �qij.

Secondly, the local quartic may itself spuriously violate monotonicity within the interval over which it is defined. This is a
sub-grid-scale violation and the algorithm proposed in [12] for a parabola is adapted to the quartic context, as follows.

3.1. Sub-grid-scale detection

Finding the roots of the cubic dqiðnÞ=dn ¼ 0 to determine the number and locations of extrema is not straightforward.
Therefore the sub-grid-scale detection algorithm instead uses the product of the slopes at both ends of the CV, i.e.
li � ðdqi=dnÞn¼0 � ðdqi=dnÞn¼1 ¼ að1Þi að1Þi þ 2að2Þi þ 3að3Þi þ 4að4Þi

� �
; ð44Þ
together with the properties of inflection points, to determine whether the quartic is monotone for n 2 ½0;1�. The two inflec-
tion points n�i , if they exist, are the roots of the quadratic equation d2qi=dn2 � 2að2Þi þ 6að3Þi nþ 12að4Þi n2 ¼ 0 (i.e. n�i ¼ ð�að3Þi �ffiffiffiffiffiffi

xi
p Þ=ð4að4Þi Þ, where xi � ðað3Þi Þ

2 � 8að2Þi að4Þi =3 P 0 for inflection points to exist).
Let s�i be the slopes at n�i (i.e., s�i � ðdqiðnÞ=dnÞn¼n�i

), let s0
i and s1

i be the slopes at n ¼ 0 and n ¼ 1, respectively (i.e., s0
i � að1Þi

and s1
i � að1Þi þ 2að2Þi þ 3að3Þi þ 4að4Þi ), and define the marker mi for the quartic qiðnÞ as
mi ¼

0 if qiðnÞ is monotone for n 2 ½0;1�;
�1 if qiðnÞ has one minimum for n 2 ½0;1�;
þ1 if qiðnÞ has one maximum for n 2 ½0;1�;
2 if qiðnÞ has two extrema for n 2 ½0;1�
3 if qiðnÞ has three extrema for n 2 ½0;1�:

8>>>>>>><
>>>>>>>:

ð45Þ
Depending on the sign of li, there are three different cases to be considered.

3.1.1. li < 0
Since the product li of the end slopes is negative, there are either three extrema or there is a single extremum. Thus
mi ¼
3 if xi P 0 � n�i 1� n�i


 �
> 0 � nþi 1� nþi


 �
> 0 � s0

i s�i < 0;
sign s0

i


 �
otherwise;

(
ð46Þ
where signðx P 0Þ � 1 and signðx < 0Þ � �1, and � denotes the logical ‘‘AND”. [In (46): satisfaction of xi P 0
ensures the existence of inflection points; satisfaction of n�i ð1� n�i Þ > 0 � nþi ð1� nþi Þ > 0 ensures that n�i and nþi are both
located within the interval ½0;1�; s0

i s�i < 0 ensures that the product of the slope at the leftmost point of the interval with that
at the leftmost point of inflection is negative; and signðs0

i Þ identifies whether a single extremum is a minimum or a
maximum.]

3.1.2. li > 0
Since the product li of the end slopes is positive, there are either two or no extrema, i.e.
mi ¼
2 if xi P 0 � n�i 1� n�i


 �
> 0 � s0

i s�i < 0
� �

	 nþi 1� nþi

 �

> 0 � s0
i sþi < 0

� ��
	 n�i 1� n�i


 �
> 0 � nþi 1� nþi


 �
> 0 � s�i sþi < 0

� �

;

0 otherwise;

8><
>: ð47Þ
where 	 denotes the logical ‘‘OR”.

3.1.3. li ¼ 0
For this case either s0

i ¼ 0 or/and s1
i ¼ 0, and there are either two, one, or no extrema, i.e.
mi ¼

2 if xi P 0 � n�i 1� n�i

 �

> 0 � nþi 1� nþi

 �

> 0 � s0
i s�i þ s1

i sþi

 �

< 0;

sign s0
i � s1

i


 �
if xi P 0 � n�i 1� n�i


 �
> 0 � s0

i þ s1
i


 �
s�i < 0

� �
	 nþi 1� nþi


 �
> 0 � s0

i þ s1
i


 �
sþi < 0

� �� 

;

sign s�i

 �

if xi P 0 � n�i 1� n�i

 �

> 0 � nþi 1� nþi

 �

> 0 � s0
i þ s1

i


 �
¼ 0;

0 otherwise:

8>>>><
>>>>:

ð48Þ
Once values for the markers mi have been assigned, all quartics with mi–0 are then modified, with one exception, which is
now described.
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3.2. Authenticity of a single extremum

When mi ¼ �1, it is possible that the associated extremum is genuine and that it should not therefore be treated as being
sub-grid-scale and spurious. Authenticity is determined by examination of various combinations of values at neighbouring
points around the control-volume ðiÞ, as in [18]. In summary, when mi ¼ �1, a quartic is judged to have spurious extrema if
any of the following additional conditions hold:
ðqi�1=2 � qi�3=2Þðqiþ3=2 � qiþ1=2ÞP 0
ðqi�3=2 � qi�5=2Þðqi�1=2 � qi�3=2Þ 6 0
ðqiþ3=2 � qiþ1=2Þðqiþ5=2 � qiþ3=2Þ 6 0

ðqi�1=2 � qi�3=2Þmi 6 0

9>>>=
>>>;
: ð49Þ
The extremum is otherwise considered to be genuine, consistent with the local distribution of gridpoint values, and the local
quartic is then left unchanged and its associated mi reset to zero.

3.3. Sub-grid-scale correction

Assume that an interval with index i has been detected that is not monotonic and in need of correction, i.e., mi–0. The
underlying strategy adopted for imposing monotonicity is to: (i) always retain the conservation constraint; (ii) modify
the quartic to be monotone within the interval [0,1]; and (iii) ensure that the modified quartic is bounded by its original
endpoint values (i.e., qi�1=2 6 qiðnÞ 6 qiþ1=2). Depending upon the value of �qi within the range ½qi�1=2;qiþ1=2� and, defining
Dqi � qiþ1=2 � qi�1=2, there are five distinct regimes, plus an additional one when �qi is outside this range. It is straightforward
to show that all sets of coefficients (50)–(54), given below, result in a qiðnÞ that locally satisfies the above three criteria for
the range of �qi for which it is defined.

3.3.1. Regime 1: �qi 2 qi�1=2;qi�1=2 þ 1
5 Dqi

h i
Construct the monotonic quartic such that

R 1
0 qiðnÞdn ¼ �qi; qið0Þ ¼ qi�1=2; ðdqi=dnÞjn¼0 ¼ ðd

2qi=dn2Þjn¼0 ¼ ðd
3qi=dn3Þjn¼0 ¼

0. Thus
að0Þi ¼ qi�1=2; að1Þi ¼ að2Þi ¼ að3Þi ¼ 0; að4Þi ¼ �5qi�1=2 þ 5�qi: ð50Þ
[Ideally one would like to impose qið1Þ ¼ qiþ1=2, i.e. continuity of q at the other end of the interval, whilst dropping the con-
dition ðd3qi=dn3Þjn¼0 ¼ 0. This however fails to guarantee monotonicity.]

3.3.2. Regime 2: �qi 2 qi�1=2 þ 1
5 Dqi;qi�1=2 þ 2

5 Dqi

h i
For this case it is possible to preserve continuity of q at both ends of the interval and to construct the monotonic quartic

such that
R 1

0 qiðnÞdn ¼ �qi; qið0Þ ¼ qi�1=2;qið1Þ ¼ qiþ1=2; ðdqi=dnÞjn¼0 ¼ ðd
2qi=dn2Þjn¼0 ¼ 0. Thus
að0Þi ¼ qi�1=2; að1Þi ¼ að2Þi ¼ 0; að3Þi ¼ �16qi�1=2 � 4qiþ1=2 þ 20�qi; að4Þi ¼ 15qi�1=2 þ 5qiþ1=2 � 20�qi: ð51Þ
3.3.3. Regime 3: �qi 2 qi�1=2 þ 2
5 Dqi;qi�1=2 þ 3

5 Dqi

h i
For this case it is possible to preserve continuity of q at both ends of the interval and to construct an antisymmetric (with

respect to 1
2 ðqi�1=2 þ qiþ1=2Þ) monotonic quartic such that

R 1
0 qiðnÞdn ¼ �qi, qið0Þ ¼ qi�1=2;qið1Þ ¼ qiþ1=2; ðdqi=dnÞjn¼0 ¼

ðdqi=dnÞjn¼1 ¼ 0. Thus
að0Þi ¼ qi�1=2; að1Þi ¼ 0; að2Þi ¼ �18qi�1=2 � 12qiþ1=2 þ 30�qi;

að3Þi ¼ 32qi�1=2 þ 28qiþ1=2 � 60�qi; að4Þi ¼ �15qi�1=2 � 15qiþ1=2 þ 30�qi:
ð52Þ
3.3.4. Regime 4: �qi 2 qi�1=2 þ 3
5 Dqi;qi�1=2 þ 4

5 Dqi

h i
This is the antisymmetric image of regime 2 and obtained by fitting a quartic that satisfies:

R 1
0 qiðnÞdn ¼ �qi; qið0Þ ¼ qi�1=2;

qið1Þ ¼ qiþ1=2; ðdqi=dnÞjn¼1 ¼ ðd
2qi=dn2Þjn¼1 ¼ 0. Thus
að0Þi ¼ qi�1=2; að1Þi ¼ �8qi�1=2 � 12qiþ1=2 þ 20�qi; að2Þi ¼ 18qi�1=2 þ 42qiþ1=2 � 60�qi;

að3Þi ¼ �16qi�1=2 � 44qiþ1=2 þ 60�qi; að4Þi ¼ 5qi�1=2 þ 15qiþ1=2 � 20�qi:
ð53Þ
3.3.5. Regime 5: �qi 2 qi�1=2 þ 4
5 Dqi;qiþ1=2

h i
This is the antisymmetric image of regime 1 and obtained by fitting a quartic that satisfies:

R 1
0 qiðnÞdn ¼ �qi; qið1Þ ¼

qiþ1=2; ðdqi=dnÞjn¼1 ¼ ðd
2qi=dn2Þjn¼1 ¼ ðd

3qi=dn3Þjn¼1 ¼ 0. Thus



Table 1
Scheme

Acro

PSM
PQM
QSM
PSM
PQM
QSM
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að0Þi ¼ �4qiþ1=2 þ 5�qi; að1Þi ¼ 20qiþ1=2 � 20�qi; að2Þi ¼ �30qiþ1=2 þ 30�qi;

að3Þi ¼ 20qiþ1=2 � 20�qi; að4Þi ¼ �5qiþ1=2 þ 5�qi:
ð54Þ
3.3.6. Regime 6: �qi R ½qi�1=2;qiþ1=2�
For the special case of �qi R ½qi�1=2;qiþ1=2� (i.e. �qi is outside the range of the left and right estimates qi�1=2 and qiþ1=2), the

only option left is to use a constant, i.e. qiðnÞ ¼ �qi and thus
að0Þi ¼ �qi; að1Þi ¼ að2Þi ¼ að3Þi ¼ að4Þi ¼ 0: ð55Þ
Note that (50)–(54) are continuous across the four regime boundaries �qi ¼ qi�1=2 þ 1
5 Dqi; qi�1=2 þ 2

5 Dqi; qi�1=2 þ 3
5 Dqi;

qi�1=2 þ 4
5 Dqi, i.e. the quartics in two adjacent regions degenerate to the same function at their common boundary. For exam-

ple, the quartic defined by (52) for �qi ¼ qi�1=2 þ 2
5 Dqi is identical to that defined by (51) for this value of �qi.
4. Results

4.1. Preamble

See Table 1 for the nomenclature used within this section.
The test problems employed in [12] to illustrate the performance of PSM, with and without its monotonic filter, are

also used herein to illustrate the performance of QSM, with and without its monotonic filter. In [12] PSM was compared
with PPM [1] . Analogously, QSM is here compared with the Piecewise Quartic Method (PQM) with and without its filter
[20]. The version of PQM used here is the method referred to in [20] as PQM ih6=ih5. It is the most accurate flavour
amongst those presented in [20] and corresponds to an implicit reconstruction with sixth-order estimates for edge values
and fifth-order ones for edge slopes. Performance is measured using the error measures suggested by [21] and summa-
rised in Appendix B.

The computational domain used for the test problems is the interval X � fx 2 ½0;2L� � ½x1=2; xNþ1=2�g, which is divided into
N sub-intervals hi � xiþ1=2 � xi�1=2; i ¼ 1;2; . . . ;N. Given the initial value problem of Section 2.1 with an average density dis-
tribution ð�q1; �q2; . . . ; �qNÞ, then the problem is to compute, using the QSM/PQM/PSM remapping algorithm, the discrete solu-
tion ð�qnþ1

1 ; �qnþ1
2 ; . . . ; �qnþ1

N Þ at time tnþ1 � tn þ Dt from the known solution at time tn.
4.2. Uniform advection of a sine wave

This test is used to compare the performance of QSM against PSM for the infinitely differentiable distribution
�qðx;0Þ ¼ sin
px
L

� �
; ð56Þ
with uðx; tÞ ¼ U ¼ 1.
Table 2 displays the convergence of l2 error for this test as a function of resolution N, when using PSM and QSM on a uni-

form grid (parameters as specified in the table and hi ¼ h ¼ constant). It can be verified from the data that PSM and QSM
converge as Oðh4Þ and Oðh6Þ , respectively, consistent with the properties of parabolic and quartic splines for sufficiently dif-
ferentiable functions. [There is one, apparently anomalous result, inasmuch as l2ðQSMÞwith 512 points is not 64 ð� 26Þ times
smaller than l2ðQSMÞ with 256 points, as one would expect, but only 10 times smaller. This is because the error with 512
points is at the limit of machine precision.] Furthermore the ratio r of the l2 errors for PSM and QSM behaves as Oðh�2Þ,
as it should: even at the low resolution of 8 points, QSM has an l2 error that is 50 times smaller than that for PSM, and
the relative advantage increases dramatically as resolution is increased.
acronyms.

nym Scheme

Parabolic Spline Method [12]
Piecewise Quartic Method ðih6=ih5Þ [20]
Quartic Spline Method

-M Parabolic Spline Method with its Monotonic filter [12]
-M Piecewise Quartic Method with its Monotonic filter [20]
-M Quartic Spline Method with its Monotonic filter



Table 2
Convergence of l2 error as a function of resolution N (=number of intervals) for uniform advection of a sine wave on a periodic domain with L ¼ 1=2; e ¼ 0:12
(e ¼ uDt=h = Courant number) and 20 timesteps. The ratio r is defined as r � l2ðPSMÞ=l2ðQSMÞ.

N 8 16 32 64 128 256 512

l2(PSM) 0.549E�02 0.254E�03 0.143E�04 0.872E�06 0.541E�07 0.337E�08 0.211E�09
l2(QSM) 0.109E�03 0.982E�06 0.120E�07 0.173E�09 0.264E�11 0.424E�13 0.440E�14
r 0.504E+02 0.258E+03 0.120E+04 0.504E+04 0.205E+05 0.796E+05 0.479E+05
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4.3. Uniform advection of a generalised cosine-hill

Consider the generalised cosine-hill of order p, viz.
Table 3
Ratio r

N

p ¼ 2
p ¼ 4
p ¼ 6
p ¼ 8
�qðxÞ ¼ cosp p x�Lð Þ
2l

h i
for L� l 6 x 6 Lþ l;

0 otherwise;

(
ð57Þ
on the domain ½0;2L� with p a positive integer and 0 < l < L. This hill is continuous, has its first p� 1 derivatives continuous,
and its spectrum decays asymptotically as k�ðpþ1Þ, where k is wavenumber.

Table 3 shows the performance of PSM and QSM for generalised cosine-hill with increasing degrees of smoothness p. As
discussed in Section 3.2.3 of [12], the case p ¼ 4 is the first for which the hill is sufficiently smooth to give errors that behave
asymptotically as Oðh4Þ. Similarly, the case p ¼ 6 for QSM is the first for which the hill is sufficiently smooth to give errors
that behave asymptotically as Oðh6Þ.

For lower degrees of smoothness (i.e. p ¼ 2 and p ¼ 4), and consistent with the above discussion, it is seen from Table 3
that the ratio r of the l2 errors for PSM and QSM does not behave asymptotically as Oðh2Þ because the error is dominated by
the discontinuities of low-order derivatives. In particular, for p ¼ 2; r remains almost unchanged as resolution is increased.
However, for p ¼ 6 and p ¼ 8; r increases significantly, and approximately as Oðh2Þ, as resolution is increased. [Note though,
and similarly to the parenthetical comment in Section 4.2, this is not so for N ¼ 2048 because the error with N ¼ 1024 is
already at almost machine precision and cannot be driven down much further.]

4.4. Uniform advection of an irregular signal

To test the monotonicity part of the algorithm, let the initial distribution be given by [18]:
�qðx;0; CÞ ¼ ftanh½c1ðx� c2Þ� þ tanh½c3ðx� c4Þ�gf1þ c5 sinð2pc6xÞgf1þ c7 sinð2pc8x� c9Þg
þ ftanh½c10ðx� c11Þ� þ tanh½�c10ðx� c12Þ�g þ c13; ð58Þ
where C ¼ fc1; . . . ; c13g is a set of constants. Two variants of this problem are used for evaluation purposes: an irregular sig-
nal with mixed smooth and unsmooth parts, including quasi-discontinuities; and a profile having steep gradients.

The initial field �qðx;0; C1Þ for uniform advection of an irregular signal is given (as in [18]) by (58), where
C1 ¼ ½10;0:3;�20;0:6;0:3;11;0:4:;10;0:5;200; :0:1;0:3;1�, and it is advected with uniform velocity U ¼ 1 on a uniform grid
Dxi ¼ Dx = constant, with N ¼ 50 intervals, and L ¼ 1=2. The timestep Dt ¼ 1=Nt , where Nt ¼ 38 is the number of timesteps
per period, and the Courant number e � UDt=Dx ’ 1:3.

Table 4 displays the errors for PSM, PQM, QSM, PSM-M, PQM-M and QSM-M for this problem after one and five periods. It
can be seen that overall QSM is more accurate than both PQM and PSM, even for a highly unsmooth and irregular profile. It
can also be seen that, as expected theoretically, the accuracy of PQM lies between that of PSM and QSM. Furthermore, the
high-order QSM monotonic filter maintains the advantage of QSM over PSM, especially around regions of steep gradients
(e.g. the regions around x ¼ 0:1 and x ¼ 0:6). This is evident in Figs. 1 and 2 which graphically display the results of QSM
and PSM summarised in Table 4. After one period (Fig. 1), it can be seen that both PSM-M and QSM-M selectively remove
the undershoot that appears for x a little smaller than x ¼ 0:1, and the overshoot for x a little larger, with negligible impact
elsewhere. After five periods (Fig. 2), again both filters continue to be selectively activated for regions where needed whilst
maintaining high-order accuracy elsewhere in the domain. Although the performance of PQM without its filter lies between
PSM and QSM, PQM-M loses its advantage over PSM-M due its over-damping filter. This is clearly evident in Fig. 3 where
there is good agreement between PQM and QSM (Fig. 3(a)), but PQM-M almost flattens the signal between x ¼ 0:4 to
� l2ðPSMÞ=l2(QSM) at different resolutions N for the generalised cosine-hill (57) with different powers p. L ¼ 1=2; l ¼ 7=64; e ¼ 0:12 and 20 time steps.

32 64 128 256 512 1024 2048

0.174E+01 0.170E+01 0.166E+01 0.166E+01 0.165E+01 0.165E+01 0.165E+01
0.360E+01 0.851E+01 0.102E+02 0.129E+02 0.176E+02 0.245E+02 0.344E+02
0.213E+01 0.154E+02 0.891E+02 0.464E+03 0.216E+04 0.922E+04 0.143E+05
0.165E+01 0.100E+02 0.653E+02 0.353E+03 0.165E+04 0.697E+04 0.202E+05



Table 4
Comparison of errors for uniform advection of an irregular signal for one and five periods with Nt ¼ 38 timesteps per period and e � UDt=Dx ’ 1:3.

l1 l2 l1 lmin lmax

One period
PSM 0.04124 0.06647 0.14795 �0.04899 �0.03574
PQM 0.03592 0.05487 0.11230 �0.08517 �0.00462
QSM 0.03356 0.05155 0.10361 �0.08189 �0.00860
PSM-M 0.03728 0.06853 0.14481 0.00000 �0.05400
PQM-M 0.04150 0.07442 0.14324 0.00000 �0.08189
QSM-M 0.02849 0.05635 0.12726 0.00000 �0.06194

Five periods
PSM 0.05667 0.08835 0.18713 �0.05069 �0.03932
PQM 0.04269 0.06378 0.13722 �0.06100 �0.02569
QSM 0.04015 0.06128 0.12805 �0.05640 �0.02504
PSM-M 0.05370 0.08861 0.18226 0.00002 �0.05044
PQM-M 0.05351 0.08552 0.15286 0.00001 �0.10490
QSM-M 0.03577 0.06667 0.15026 0.00000 �0.06086
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Fig. 1. Results after one complete period for the uniform advection of an irregular signal: (a) PSM; (b) QSM; (c) PSM-M; and (d) QSM-M. Parameters as in
Table 4, and numerical solutions are shown with asterisks and continuous lines whilst analytical solutions are in dashed lines.
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x ¼ 0:6 in a similar manner to that observed for the PPM-filter [12,8]. A well known feature of the stringent PLM slope limiter
(on which PQM-M is based) is that it causes a significant clipping but tends to preserve the sharpness of a step-like profile
[8]. In contrast, the monotonic filter of QSM-M achieves monotonicity whilst maintaining close agreement with the analyt-
ical solution and without suffering from the excessive damping of PQM-M (Fig. 3(b)).
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Fig. 2. As in Fig. 1 but for five periods: (a) PSM; (b) QSM; (c) PSM-M; and (d) QSM-M.
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Fig. 3. Comparison of QSM and PQM for the advection of the irregular signal after five periods: (a) QSM vs PQM; (b) QSM-M vs PQM-M.
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4.5. Uniform advection of a steep-gradient profile

The initial field �q0ðx; 0; C2Þ for uniform advection of a steep-gradient profile is given (as in [18]) by (58), where
C2 ¼ ½200;0:1;�200;0:7;0;0;0;0;0;100;0:3;0:5;0�. It is advected using the same parameters as in the previous problem ex-
cept that Nt ¼ 71 and e ’ 0:7.



Table 5
Comparison of errors for uniform advection of a steep-gradient profile for one and five periods with Nt ¼ 71 timesteps per period and e � UDt=Dx ’ 0:7.

l1 l2 l1 lmin lmax

One period
PSM 0.06805 0.09068 0.14953 �0.04434 0.03617
PQM 0.06300 0.07090 0.11383 �0.05771 0.03552
QSM 0.05753 0.06641 0.10443 �0.05420 0.03177
PSM-M 0.05848 0.08961 0.14395 0.00000 �0.00022
PQM-M 0.04725 0.07783 0.13340 �0.00286 �0.00050
QSM-M 0.04319 0.07402 0.12305 0.00000 �0.00004

Five periods
PSM 0.10491 0.11817 0.17850 �0.03928 0.03354
PQM 0.07734 0.08701 0.14119 �0.04999 0.04001
QSM 0.07178 0.08261 0.13159 �0.04150 0.03434
PSM-M 0.08825 0.11380 0.17285 0.00001 �0.00025
PQM-M 0.06275 0.09096 0.15700 �0.00150 �0.00251
QSM-M 0.05767 0.08591 0.14202 0.00000 �0.00016
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Fig. 4. As in Fig. 1 but for uniform advection of a steep-gradient profile with e ’ 0:7: (a) PSM, (b) QSM, (c) PSM-M; and (d) QSM-M.
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Table 5 displays the errors for PSM, PQM, QSM, PSM-M, PQM-M and QSM-M for this problem. Similarly as for the previous
problem, QSM is more accurate overall than both PSM and PQM, even for this problem which is an advection of a compo-
sition of quasi-step functions. Figs. 4 and 5 graphically display the results of QSM and PSM summarised in Table 5. It is seen
that, as expected, both PSM-M and QSM-M filters behave very similarly but with QSM-M having sharper representations
around regions of steep gradients: this is due to the use of a quartic spline rather than a parabolic one, together with a quartic
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Fig. 5. As in Fig. 4 but for five periods: (a) PSM; (b) QSM; (c) PSM-M; and (d) QSM-M.
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Fig. 6. Comparison of QSM and PQM for the advection of the steep gradient after five periods: (a) QSM vs PQM; (b) QSM-M vs PQM-M.
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sub-grid-scale reconstruction even when the monotonic filter is activated. Unlike the irregular signal, for this problem (and
for the reasons mentioned previously concerning the PLM/PQM slope limiter) PQM-M now maintains its advantage over
PSM-M due to the quasi-step nature of the profile. This is also evident in Fig. 6 where there is a good visual agreement be-
tween QSM and PQM without and with their respective filters, albeit QSM-M is much sharper although the difference is less
pronounced than for the irregular signal.
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4.6. Computational cost

All the methods used here require a reconstruction and a common integration parts. For the reconstruction part, QSM
requires the solution of one pentadiagonal system, whereas PQM solves two tridiagonal systems and PSM one tridiagonal
system. The cost of a pentadiagonal system is approximately twice (although this can be only 9/5 using efficient algo-
rithms as in [22]) that of a tridiagonal one and therefore, the computational cost of QSM is similar to that of PQM and
twice that of PSM. This also agrees with run-times on a single processor for unoptimised codes (e.g. using the problem
of the irregular signal after five periods, cpu-QSM = 1.1 cpu-PQM and 1.8 cpu-PSM). Note that the original QSM code was
written for a general variable mesh, where the coefficients of the pentadiagonal matrix are long expressions (see Appen-
dix A), whereas for simplicity, PQM was coded for a constant mesh, where the coefficient of the tridiagonal systems are
simple numbers. For a general variable mesh, the implicit PQM would require the solutions of an extra 6 � 6 system of
equations to compute the coefficients of every row of the two PQM diagonal matrices [20].

5. Conclusions

A quartic spline based remapping has been presented and tested for transport problems. Of all piecewise-quartic func-
tions that satisfy the given mass (average density) distribution, it is an optimal reconstruction, since it possesses the mini-
mum norm and best approximation properties [16].

A high-order monotonicity filter is also incorporated into the proposed scheme. It follows the same approach as in [12] by
satisfying monotonicity whilst preserving mass and maintaining the highest order reconstruction possible. Results show that
QSM with its filter is more selective and less damping than PSM and PQM with their respective filters: it removes spurious un-
der/overshoots near discontinuities, with negligible impact on the smooth part of the solution. It is worth noting that this filter is
independent of the underlying spline representation adopted here, and is of more general application.

For higher dimensional remappings, this 1D-algorithm can be combined with a splitting strategy. This can be a fixed-
directional splitting (e.g. as in the Lin and Rood scheme with PPM [23]) or flow-dependent splitting such as the SLICE ap-
proach [2,3,13]. This makes possible a high-order accurate remapping for higher-dimensional problems without incurring
a prohibitive computational cost, as demonstrated in [13] for the SLICE approach in both Cartesian and spherical geometries,
and in [24] for remapping between spherical grids.

Acknowledgments

The authors thank the two referees for their helpful comments. The authors also wish to acknowledge Dr. Laurent White
[20] for providing details of the implementation of PQM.

Appendix A. The non-uniform counterparts of (24), (25), and (28)–(37)

Following the four-step procedure outlined in Section 2.2, the non-uniform counterparts of (24) and (25) are found to be
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Following the three-step procedure outlined in Section 2.3, the non-uniform counterparts of the remaining eight (near
boundary) equations of (28)–(37) are found to be
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Appendix B. Error measures

Performance is measured using the error measures suggested by [21], viz.
l1 �
Iðj�qnum � �qanjÞ
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lmax �
maxð�qnumÞ �maxð�qanÞ
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where �qnum and �qan refer to the numerical and analytical solutions respectively, and Ið�qÞ is a global integral (or global mass)
given by
Ið�qÞ �
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References

[1] P. Colella, P. Woodward, The piecewise parabolic method (PPM) for gas-dynamical simulations, J. Comput. Phys. 54 (1984) 174–201.
[2] M. Zerroukat, N. Wood, A. Staniforth, SLICE: a semi-Lagrangian inherently conserving and efficient scheme for transport problems, Q. J. Roy. Meteorol.

Soc. 128 (2002) 2801–2820.
[3] M. Zerroukat, N. Wood, A. Staniforth, SLICE-S: a semi-Lagrangian inherently conserving and efficient scheme for transport problems on the sphere, Q. J.

Roy. Meteorol. Soc. 130 (2004) 2649–2664.
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